DENEY 3 ELEKTRO-OKULOGRAM (EOG) ÖLÇÜMÜ

3.0 AMAÇ

Bu deneyin amacı, öğrencilerin göz küresini kontrol eden kaslardaki değişimleri anlamalarına yardımcı olmaktır. Bu deneyde, göz kürenin hareketini düzenleyen altı kas lifindeki elektriksel aktivasyon ölçülecektir. Öğrenciler göz küresi yatay ve dikey yönde hareket ettiğinde hangi göz kaslarının çalıştığını gözlemleyeceklerdir. Bu onların beyin korteksinin tepkisini öğrenmelerine yarımcı olmaktadır.

3.1 FIZYOLOJIK PRENSIP

Şekil 3.1. de gösterildiği gibi, göz hareketleri medial ve lateral recti kası, superior ve interior rekti kası, superior ve interior oblik kası olmak üzere 3 ayrı kas çifti tarafından sağlanır. Rektis mediyalis ve rektus laterdis karşılıklı karşılar ve bu göz küresini bir taraftan diğer tarafa hareket ettirir. Rektus superior ve rektus inferior karşılıklı kasılırlar ve göz küresini aşağı veya yukarı doğru hareket ettirirler. Oblik kaslar, görüş alanını dik pozisyonda tutmak için göz küresini döndürürler. Her iki gözü kontrol etmek için bu kasların dağılımı simetriktir. Şekil 3.2 de gözlerin dört yönlü hareketleri ve bunlara karşılıklı gelen kası aktiviteleri görülmektedir. Üç kas çifti üçüncü, dördüncü ve altıncı kronyal sinirler tarafından kontrol edilir. Her bir göz için her bir kas grubu karşılıklı olarak sinirler tarafından kontrol edilir. Böylece bir kas çifti kasılırken öbür kas çifti istirahat pozisyonuna geçer.

Gözlerin en önemli hareketleri gözleri görüş alanının soyut bölümüne sabitleyen hareketlerdir. Bu sabitleme mekanizması, oksipital korteksin sekonder görüş alanı tarafından kontrol edilir. Görüş sabitlemesi, hedefi retina ortasındaki alana kilitleyebilir. Obje görüntüsü fovea'nın ortasından fovea'nın kenarına doğru hareket edince, obje görüntüsü geri fovea ortasına getirmek için refleks tepki negatif geri çevirme mekanizması üzerinden üç çift göz kasının hareketini düzenler. Böylece görüntü yukarı doğru hareket edince, göz küresi aşağı doğru hareket eder görüntü sola gidince göz küresi sağa doğru hareket eder. Her iki harekette sonunda görüntüyü fovea'nın ortasına geri getirir. Bunun için kilitlenen nesneye göz hareketleri yardımıyla en net görüntüyü elde edebilmek için her zaman fovea'nın ortasına konacaktır.

Şekil 3.2 Dört yönde göz hareketleri ve onlara karşılık gelen oküler kaslar

3.2 DEVRE DİZAYNININ PRENSİPLERİ

1. EOG Ölçüm Devresinin Blok Diyagramı

Bir önceki bölümde anlatıldığı gibi, göz hareketleri başlıca üç çift kas tarafından sağlanıyor. Serebal sinirlerden gelen uyarıyla oküler kaslarda potansiyel değişimini meydana getirir. Şekil 3.2. de gösterildiği gibi, göz küreleri farklı yönlerde hareket edince, karşılıklı gelen göz kasları uyarılır. Böylece yatay ve dikey göz hareketleri eş zamanlı olarak deneyde gözlenebilir. Dört elektrot üst, alt, sağ ve sol göz alanlarına sırasıyla yerleştirilir ve referans elektrot frontal loba konur. Güç kaynağından veya ölçüm cihazından gelen sızıntıyla oluşabilecek elektriksel çarpmalara karşı izolasyon fikri, EOG devresinin tasarlanması sırasında düşünülmelidir.

Şekil 3.3 EOG ölçüm devresinin blok şeması gösterilmektedir. Sırasıyla yatay ve dikey göz hareketlerinin eş zamanlı ölçümünde iki devre vardır. Göz sağa sola yukarı ve aşağı hareket edince karşılık gelen kas gücü de değişecektir. Aşağıda EOG Ölçüm devresinin blok şeması gösterilmektedir. Sırasıyla yatay ve dikey göz hareketlerinin eş zamanlı ölçümünde iki devre vardır. Göz sağa sola yukarı ve aşağı hareket edince karşılık gelen kas gücü de değişecektir. 5 kat kazançlı bir anfi takımı EOG snyallerine ait tek kutuplu koponentleri toplamak için ön anfi olarak uygulanır. İzolasyon devresinin fonksiyon sinyali ve hat güç kaynağını izole etmektir. Bant geçiren filtrenin band genişliği 0,05 ile 30 Hz arasındadır. Yükselme katsayısı 50 olan bir anfi zayıf bir sinyali büyüterek geçirebilir. Daha sonra da EOG sinyalleri doğrudan doğruya osiloskop ve display e iletilebilir.

Şekil 3.4 te ölçüm anfileri OP1 veya OP6 kullanılarak oluşturulan önanfi devreleri gösterilmektedir. Sırasıyla kas kuvvetlerinin yatay ve dikey kuvvetlerini belirlemek için kullanılırlar. Her bir anfinin kazanç değeri denklem 3.1 de belirlenmektedir. Referans terminalinin (pin5) gerilimi sıfır olarak kabul edilir. Z₂ den Z₂₇ ye kompanzasyon potansiyeli çıkış geriliminin ayarlanması ile belirlenebilir.

$$Av = \frac{49.4k\Omega}{Z_1} + 1 \quad \& \quad Av = \frac{49.4k\Omega}{Z_{26}} + 1 \tag{3.1}$$

3. Bant Geçirmeyen Filtre Devresi

Şekil 3.5 RC devrelerle oluşturulan çift-T bant geçirmeyen fitre devresini göstermektedir. Bant geçirmeyen filtre 1 şekil 3.5(a) da OP2B Z_3 , Z_4 , Z_5 veya(Z_6), Z_7 , Z_8 ve Z_9 dan oluşmaktadır. Eğer Z_3 = Z_7 , Z_4 = Z_8 , Z_5 =0.5* Z_3 (veya Z_6 =0.5* Z_3) ve Z_9 =2* Z_4 ise merkez frekansı denklem 3.2 deki gibi hesaplanmaktadır.

$$f = \frac{1}{2\pi Z_3 Z_4}$$
(3.2)

Bant geçirmeyen filtre 2 şekil 3.5(b) de OP2A Z_{28} , Z_{29} , Z_{30} veya(Z_{31}), Z_{32} , Z_{33} ve Z_{34} den oluşmaktadır. Eğer $Z_{28}=Z_{32}$, $Z_{29}=Z_{33}$, $Z_{30}=0.5*Z_{34}$ (veya $Z_{31}=0.5*Z_{34}$) ve $Z_{34}=2*Z_{29}$ ise merkez frekansı denklem 3.3 deki gibi hesaplanmaktadır.

$$f = \frac{1}{2\pi Z_{28} Z_{29}}$$

4. İzolasyon devresi

OP3 ve OP8 ile oluşturulmuş izolasyon devresi şekil 3.6 da gösterilmektedir. Burada izolasyon sinyali optik yaklaşımla elde edilmektedir.

(3.3)

5. Bant Geçiren Filtre Devresi

Devre dizaynında, OP4B ve OP7B şekil 3.7(a) da gösterildiği gibi 2. dereceden yüksek geçirgen filtre olarak kullanılmaktadır. Filtrenin kesim frekansı 0.05 Hz olarak ayarlanır. Denklem 3.4 de gösterildiği şekilde Z_{11} , Z_{12} , Z_{13} ve Z_{14} e veya Z_{36} , Z_{37} , Z_{38} ve Z_{39} a bağlı olarak ifade edilir.

$$f_{L} = \frac{1}{2\pi\sqrt{Z_{11}Z_{12}Z_{13}Z_{14}}} \quad \& \quad f_{L} = \frac{1}{2\pi\sqrt{Z_{36}Z_{37}Z_{38}Z_{39}}}$$
(3.4)

Denklem 3.5 te her bir devrenin bant geçirme kazancı ifade edilmiştir.

(a) 2 dereceden yüksek geçiren filtre (b) 2 dereceden alçak geçiren filtre Şekil 3.7 Filtre Devreleri

Devre dizaynında, OP5B ve OP9B şekil 3.7(b) de gösterildiği gibi 2. dereceden alçak geçirgen filtre olarak kullanılmaktadır. Filtrenin kesim frekansı 30 Hz olarak ayarlanır. Denklem 3.6 de gösterildiği şekilde Z_{20} , Z_{21} , Z_{22} ve Z_{23} e veya Z_{45} , Z_{46} , Z_{47} ve Z_{48} e bağlı olarak ifade edilir.

$$f_{H} = \frac{1}{2\pi\sqrt{Z_{20}Z_{21}Z_{22}Z_{23}}} \quad \& \quad f_{H} = \frac{1}{2\pi\sqrt{Z_{45}Z_{46}Z_{47}Z_{48}}}$$
(3.6)

Denklem 3.7 te her bir bant geçirme kazancı ifade edilmiştir.

$$\frac{Z_{24} + Z_{25}}{Z_{24}} = 1.56 \quad \& \quad \frac{Z_{49} + Z_{50}}{Z_{49}} = 1.56 \tag{3.7}$$

6. Anfi Devresi

Şekil 3.8 OP4A ve OP7A ile oluşturulan evirmeyen anfi devreleri gösterilmektedir. Her bir anfi devresinde, Z₁₉ veya Z₄₄ denklem 3.8 da gösterildiği gibi kazanç ayarlaması için kullanılır.

$$A_{\nu} = \frac{Z_{17} + Z_{19}}{Z_{17}} & A_{\nu} = \frac{Z_{42} + Z_{44}}{Z_{42}}$$
(3.8)

3.3 GEREKLİ EKİPMAN

- 1. KL-76001Ana Ünitesi
- 2. KL-75003 Elektrookulogram EOGModülü RÓD
- 3. Dijital osilaskop
- 4. Dijital Voltmetre
- 5. KL-79101 5 iletkenli elektrot kablosu
- 6. Vücut Yüzey elektrotları
- 7. Alkol hazırlama bezleri
- 8. Elektrot uçları
- 9. DB9 kablosu
- 10. BNC kablo
- 11.USB kablosu
- 12. Bağlantı iletkeni
- 13.10 mm köprü ucu
- 14. Kesici

3.4 İŞLEM BASAMAKLARI

8

Şekil 3.9 KL-75003 EOG modülünün önden görünüşü

A. Yatay yüzey elektrodu devresinin kalibrasyonu

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

	KL-76001 Main Unit				KL-75003 EOG Module		
	Section	Area	Terminal	То	Block	Terminal	
	MODULE OUTPUT		9-Pin	\rightarrow		J2	
		KL-	-75003 EO	G Module			
	Block	Terminal	То	Blo	ck	Terminal	
bk	Horizontal Electro	al Reye → Horizontal D Electro		ontal tro	Leye		
	Horizontal Electro	Leye	\rightarrow	Vertical	Electro	🛞 Head	

- 2. Gücü devreye uygulayınız.
- 3. Yatay Elektrodun çıkış terminalini DVM in pozitif probuna ve toprak olarak belirlenmiş ucu negatif proba bağlayınız.
- 4. DC gerilim çıkışını DVM 0 olacak şekilde OFFSET1 potansiyometresi ile ayarlayınız.
- 5. Gücü kapatıp devreyi sökünüz.

B. Band Geçirmeyen Filtre 1'in (BRF1) Ölçüm Karakteristiği

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-7600	01 Main U	nit		KL-76001 Main Unit			
Section	Area	Terminal	То	Section	Area	Terminal	
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1	
SCOPE ADAPTOR		CH1 (BNC)	→	CH1 input of	the osci	lloscope	
SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of	the osci	lloscope	
	BR	50-					

KL-76	6001 Main l	Jnit		KL-75003 EOG Module			
Section	Area	Terminal	То	Block	Terminal		
MODULE OUTPUT		9-Pin	\rightarrow	.0	J2		
FUNCTION GENERATOR		OUTPUT	→	Horizontal Electro	Reye		
FUNCTION GENERATOR		FGGND	3¥	Horizontal Electro	Leye		
SCOPE ADAPTOR		CH2	\rightarrow	Horizontal Electro	Output		

Block Terminal To Block Termina		KL-7500	3 EOG	Module	
University Cleatre Lave N Vertical Electre Lload	Block	Terminal	То	Block	Terminal
Honzontal Electro Leye - Vertical Electro Head	Horizontal Electro	Leye	\rightarrow	Vertical Electro	Head

- Köprüleme iletkenlerini 1 veya 2 ye bağlayarak merkez frekansını 50 veya
 60 Hz e ayarlayınız. (yerel frekans değerine bağlı olarak)
- 3. Gücü devreye uygulayınız.
- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 1 Hz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 5. BRF1 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.1 e kayıt ediniz.
- 6. Giriş sinüs sinyalini değiştirmeden 4. ve 5. adımları Tablo 3.1 e verilen farklı frekans değerleri için tekrarlayınız.

Giriş Frekansı	5Hz	10Hz	20Hz	30Hz	50 veya 60Hz	100Hz	200Hz	500Hz	1KHz
BRF 1 Çıkışı (Vpp)									CTS

Tablo 3.1 BRF1'in ölçülen çıkış genlik değerleri

7. Tablo 3.1 ya kayıt ettiğiniz değerler bağlı olarak, BRF1 in karakteristiğini Tablo 3.2 de oluşturunuz.

3-10

- C. Yüksek Geçirgen Filtre 1'in (HPF1) Ölçüm Karakteristiği
- 1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-760	01 Main Ur	nit	KL-76001 Main Unit			
Section	Area	Terminal	То	Section	Area	Terminal
FUNCTION GENERATOR	-	OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1
SCOPE ADAPTOR	- 6	CH1 (BNC)	\rightarrow	CH1 input of t	ne oscillo	scope
SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of t	ne oscillo	scope
PRU-)01 Main L	Init		KI -75	003 EOG	Module 💿
		<u></u>				Tamaiaal
Section	Area	l erminal	10	BIOCK		Terminal
MODULE OUTPUT		9-Pin	\rightarrow			J2
FUNCTION GENERATOR		OUTPUT	\rightarrow	0.05Hz HPF1		Input
FUNCTION GENERATOR		FGGND	\rightarrow		PR(ii	Ground n the bottom ight corner)
SCOPE ADAPTOR		CH2	\rightarrow	0.05Hz HPF1	Z	Output

- 2. Gücü devreye uygulayınız.
- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 1 KHz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.

8

- 4. HPF1 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.3 e kayıt ediniz.
- 5. Giriş sinüs sinyalini değiştirmeden 4. ve 5. adımları tekrarlayınız.

Giriş Frekansı	1KHz	500Hz	100Hz	10Hz	5Hz	1Hz	0.3Hz	0.2Hz	0.1Hz
HPF 1									
Çıkışı									
(Vpp)								B	

Tablo 3.3 HPF 1'in ölçülen çıkış genlik değerleri

 Tablo 3.3 e kayıt ettiğiniz değerlere bağlı olarak, HPF nin karakteristiğini Tablo 3.4 de oluşturunuz.

Tablo 3.4 HPF 1'in karakteristik eğrisi

7. Cihazı kapatıp bağlantıları sökünüz.

D. Anfi 1'in Karakteristiğinin Ölçümü

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

 \bigcirc

 $\textcircled{\below}{\below}$

			5013			
	KL-7	76001 Main Unit	PR		KL-750	03 EOG Module
-	Section	Area	Terminal	То	Block	Terminal
	MODULE Solution		9-Pin	\rightarrow		J2
		KL-	-75003 EOC	6 Module		
	Block	Terminal	То	Block	K	Terminal
PR	Amplifier1	input	\rightarrow	_		Ground (in the bottom right corner)

2. Gücü devreye uygulayınız.

- 3. Anfi1 çıkışını DVM pozitif ucuna bağlayarak EOG modülünün sağ alt kısmında topraklama kısmına da DVM in negatif ucunu bağlayınız.
- 4. DC gerilim çıkışını DVM 0 olacak şekilde OFFSET2 potansiyometresi ile ayarlayınız.
- 5. KL-75003 EOG modülü üzerinden bağlantıları kaldırınız.
- 6. Aşağıdaki bağlantıları gerçekleştiriniz:

KL-7600	1 Main U	nit		KL-76	001 Main	Unit
Section	Area	Terminal	То	Section	Area	Terminal
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1
SCOPE ADAPTOR		CH1 (BNC)	\rightarrow	CH1 input of th	ne oscillos	cope
SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of th	ne oscillos	cope

KL-76	001 Main L		KL-75003 EOG Module			
Section	Area	Terminal	То	Block	Terminal	
FUNCTION GENERATOR		OUTPUT	\rightarrow	Amplifier1	Input	
FUNCTION GENERATOR	7	FGGND	\rightarrow	-	Ground (in the bottom right corner)	
SCOPE ADAPTOR	-	CH2	\rightarrow	Amplifier1	Output	
	DR					

- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 100 Hz ve 100 mVpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- GAIN1 potansiyometresini saat ibresinin tersi yönünde en küçük değer için sonuna kadar döndürünüz. CH2 ekranında oluşan anfi çıkış sinyali değerlerini Tablo 3.5 e kayıt ediniz.
- GAIN1 potansiyometresini saat ibresi yönünde değiştirerek en büyük bozulmamış çıkış sinyalini elde ediniz. Tepeden tepeye gerilim değerini Tablo 3.5 e kayıt ediniz.

	Tablo 3.5	Anfi 1'in	ölçülen	çıkış	genlik	değerleri
--	-----------	-----------	---------	-------	--------	-----------

KAZANÇ1 Konumu	Anfi çıkış gerilimi (Vpp)
Saatin tersi yönünde Minimum	
Maksimum distorsiyonsuz çıkış	

- 10.GAIN1 değerini tepeden tepeye 5 V olacak şekilde ayarlayınız. Bu durumda, anfi 1 in gerilim kazancı 50 (5 Vpp/100 mVpp) olacaktır.
- 11. Devreyi kapatıp bağlantıları sökünüz.

E. Alçak Geçirgen Filtre 1'in (LPF1) Ölçüm Karakteristiği

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-760	01 Main U	nit		KL-76	001 Main	Unit
Section	Area	Terminal	То	Section	Area	Terminal
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1
SCOPE ADAPTOR		CH1 (BNC)	\rightarrow	CH1 input of t	he oscillos	cope
SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of t	he oscillos	cope
			>			

PROD

KL-760	01 Main Un	nit	🛞 KL-75003 EOG Module					
Section	Area	Terminal	То	Block	Terminal			
MODULE OUTPUT		9-Pin	\rightarrow	- 63	J2			
FUNCTION GENERATOR		OUTPUT	\rightarrow	30Hz LPF1	Input			
FUNCTION GENERATOR		FGGND	÷		Ground (in the bottom right corner)			
SCOPE SCOPE		CH2	\rightarrow	30Hz LPF1	Output (Vo1)			

- 2. Gücü devreye uygulayınız.
- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 1 Hz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 4. LPF1 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.6 ya kayıt ediniz.
- 5. Giriş sinüs sinyalini değiştirmeden 3. ve 4. adımlarını Tablo 3.6 da verilen farklı frekanslar için tekrarlayınız.

Giriş Frekansı	1Hz	10Hz	20Hz	25Hz	30Hz	35Hz	40Hz	50Hz	100Hz
LPF 1			6						
Çıkışı		20							
(Vpp)	PF	2Ur							

Tablo 3.6 LPF 1'in ölçülen çıkış genlik değerleri

6. Tablo 3.6 e kayıt ettiğiniz değerler bağlı olarak, LPF 1'in karakteristiğini Tablo 3.7 de oluşturunuz.

F. Dikey yüzey elektrodu devresinin kalibrasyonu

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-7600	1 Main Unit	KL-75003 EOG Module					
Section	Area	Terminal	То	Block	Terminal		
MODULE	6	9-Pin	\rightarrow		.12		
OUTPUT		0111	-				
	KL-	75003 EO	G Module	•			
Block	Terminal	То	Blo	ck	Terminal		
Vertical Electro	UPeye	\rightarrow	Vertical	Electro	DNeye		
Vertical Electro	DNeye	\rightarrow	Vertical	Electro	Head		

- 2. Gücü devreye uygulayınız.
- 3. Dikey Elektrodun çıkış terminalini DVM in pozitif probuna ve toprak olarak belirlenmiş ucu negatif proba bağlayınız.
- 4. DC gerilim çıkışını DVM 0 olacak şekilde OFFSET3 potansiyometresi ile ayarlayınız.
- 5. Gücü kapatıp devreyi sökünüz.

G. Band Geçirmeyen Filtre 2 (BRF2) Ölçüm Karakteristikleri

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

		25				
KL-760	001 Main Ui	nit		KL-76	001 Main	Unit
Section	Area	Terminal	То	Section	Area	Terminal
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1
SCOPE ADAPTOR		CH1 (BNC)	\rightarrow	CH1 input of th	ne oscillos	cope
SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of th	ne oscillos	cope

KL-760	001 Main Unit	t		KL-75003 EC)G Module
Section	Area	Terminal	То	Block 🛞	Terminal
MODULE OUTPUT		9-Pin	\rightarrow	-	J2
FUNCTION GENERATOR		OUTPUT	→	Vertical Electro	UPeye
FUNCTION GENERATOR		FGGND	÷	Vertical Electro	DNeye
SCOPE ADAPTOR	SCOPE ADAPTOR		→	Vertical Electro	Output

	KL-7	5003 EC	G Module	
Block	Terminal	То	Block	Terminal
Vertical Electro	DNeye	\rightarrow	Vertical Electro	Head
PROP				

- 2. Köprüleme iletkenlerini 8 veya 9 a bağlayarak merkez frekansını 50 veya
 60 Hz e ayarlayınız. (yerel frekans değerine bağlı olarak)
- 3. Gücü devreye uygulayınız.

- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 5 Hz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 5. BRF2 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.8 e kayıt ediniz.
- 6. Giriş sinüs sinyalini değiştirmeden 4. ve 5. adımları Tablo 3.8 de verilen farklı frekans değerleri için tekrarlayınız.

DR

Giriş Frekansı	5Hz	10Hz	20Hz	30Hz	50 veya 60Hz	100Hz	200Hz	500Hz	1KHz
BRF 2 Çıkışı (Vpp)				P	ROR				

Tablo 3.8 BRF2'nin ölçülen çıkış genlik değerleri

7. Tablo 3.8 e kayıt ettiğiniz değerler bağlı olarak, BRF nin karakteristiğini Tablo 3.9 de oluşturunuz.

R V	E		;]
-	<u>-</u>	:	1					<u>.</u>								: .	4
	Ē	:	:	-			-	: :	Ē		-			-	:	:	1
	F···	:															10
	E	-	÷	-	-	-	-		t i	-	-	-	-	-		-	12
	E · · ·		 :														
	F		1						.					: 	: 	: 	E.
	Ē																3
	È								L								1
	ŧ	1	:			:			ŧ					-	:	:	₽.
	E								-								4
	E	-	2						ŧ.		-	-				-	1
	È								<u>-</u>								-
	Ł	:	1					: :	ŧ							:	1

- 8. Cihazı kapatıp bağlantıları sökünüz.
- H. Yüksek Geçirgen Filtre 2'nin (HPF2) Ölçüm Karakteristiği
- 1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-760	01 Main U	nit	KL-76001 Main Unit					
Section	Area	Terminal	То	Section	Area	Terminal		
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1		
SCOPE ADAPTOR		CH1 (BNC)	\rightarrow	CH1 input of	the oscillos	cope		
SCOPE ADAPTOR		CH2 🛞 (BNC)	\rightarrow	CH2 input of	the oscillos	cope		

KL-760	01 Main Un	nit		🛞 KL-75003 E	EOG Module
Section	Area	Terminal	То	Block	Terminal
MODULE OUTPUT		9-Pin	\rightarrow		J2
FUNCTION GENERATOR		OUTPUT	⇒	0.05Hz HPF2	Input
FUNCTION GENERATOR		FGGND	<i>→</i>		Ground (in the bottom right corner)
SCOPE SCOPE		CH2	\rightarrow	0.05Hz HPF2	Output

- 2. Gücü devreye uygulayınız.
- Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 1 KHz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 4. HPF2 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.10 e kayıt ediniz.
- Giriş sinüs sinyalini değiştirmeden 4. ve 5. adımları tekrarlayınız.Tablo
 3.10 da bulunan farklı frekanslar için 3 ve 4. Adımları tekrarlayınız.

Giriş Frekansı	1KHz	500Hz	100Hz	10Hz	5Hz	1Hz	0.3Hz	0.2Hz	0.1Hz
HPF 2 Çıkışı (Vpp)									
	50								

Tablo 3.10 HPF 2'nin ölçülen çıkış genlik değerleri

 Tablo 3.10 e kayıt ettiğiniz değerlere bağlı olarak, HPF nin karakteristiğini Tablo 3.11 de oluşturunuz.

I. Anfi 2'in Karakteristiğinin Ölçümü

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-7600	1 Main Unit	DR	KL-750	03 EOG Module	
Section	Area	Terminal	То	Block	Terminal
MODULE OUTPUT	B	9-Pin	\rightarrow		J2
	KL-	75003 EOG	6 Module		
Block	Terminal	То	Block		Terminal
Amplifier2	input	\rightarrow	_		Ground (in the bottom right comer)

- 2. Gücü devreye uygulayınız.
- 3. Anfi2 çıkışını DVM pozitif ucuna bağlayarak KL-75003 EOG modülünün sağ alt kısmında topraklama kısmına da DVM in negatif ucunu bağlayınız.
- 4. DC gerilim çıkışını DVM 0 olacak şekilde OFFSET4 potansiyometresi ile ayarlayınız.
- 5. KL-75003 EOG modülü üzerinden bağlantıları kaldırınız.

1000

6. Aşağıdaki bağlantıları gerçekleştiriniz:

KL-76001 Main Unit				🛞 KL-76001 Main Unit			
Section	Area	Terminal	То	Section	Area	Terminal	
FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1	
SCOPE ADAPTOR		CH1 (BNC)	÷	CH1 input of t	he oscillos	cope	
SCOPE ADAPTOR		CH2 (BNC)	9	CH2 input of t	he oscillos	cope	

	KL-7	6001 Main Un	it		KL-75003	EOG Module
	Section	Area	Terminal	То	Block	Terminal
	FUNCTION GENERATOR		OUTPUT	\rightarrow	Amplifier2	Input
PR	FUNCTION GENERATOR		FGGND	\rightarrow		Ground (in the bottom right corner)
	SCOPE ADAPTOR	_	CH2	\rightarrow	Amplifier2	Output

- 7. Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 100 Hz ve 100 mVpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 8. GAIN2 potansiyometresini saat ibresinin tersi yönünde en küçük değer için sonuna kadar döndürünüz. CH2 ekranında oluşan anfi çıkış sinyali değerlerini Tablo 3.12 e kayıt ediniz.
- 9. GAIN2 potansiyometresini saat ibresi yönünde değiştirerek en büyük bozulmamış çıkış sinyalini elde ediniz. Tepeden tepeye gerilim değerini Tablo 3.12 e kayıt ediniz.

Table 3 12	Anfi 2'in	ممانتماة	cikie	aonlik	doăorlor
1 8010 3.12	AIIII Z III	olçuleri	ÇINIŞ	yennik	uegenei

Tablo 3.12 Anfi 2'in ölçülen çıkış	genlik degerleri
KAZANÇ2 Konumu	Anfi çıkış gerilimi (Vpp)
Saatin tersi yönünde Minimum	
Maksimum distorsiyonsuz çıkış	
	PRU

- 10.GAIN2 değerini tepeden tepeye 5 V olacak şekilde ayarlayınız. Bu durumda, anfi 2 in gerilim kazancı 50 (5 Vpp/100 mVpp) olacaktır.
- 11. Devreyi kapatıp bağlantıları sökünüz.

PRODI

J. Alçak Geçirgen Filtre 2'nin (LPF2) Ölçüm Karakteristiği

1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

	KL-760	01 Main U	Init		KL-76001 Main Unit		
	Section	Area	Terminal	То	Section	Area	Terminal
	FUNCTION GENERATOR		OUTPUT	\rightarrow	SCOPE ADAPTOR		CH1
	SCOPE ADAPTOR		CH1 (BNC)	\rightarrow	CH1 input of th	ne oscillos	cope
-R	SCOPE ADAPTOR		CH2 (BNC)	\rightarrow	CH2 input of the	ne oscillos	cope

KL-760	01 Main Ur	nit	KL-75003 EOG Module		
Section	Area	Terminal	То	Block	Terminal
MODULE OUTPUT		9-Pin	\rightarrow	T	J2
FUNCTION GENERATOR		OUTPUT	\rightarrow	30Hz LPF2	Input
FUNCTION GENERATOR	-	FGGND	\rightarrow	PROD	Ground (in the bottom right corner)
SCOPE ADAPTOR	<u> </u>	CH2	\rightarrow	30Hz LPF2	Output (Vo2)

- 2. Gücü devreye uygulayınız.
- 3. Fonksiyon jeneratörünün frekans ve genlik kısımlarından gerekli ayarlamaları yaparak 1 Hz ve 1 Vpp değerinde sinyali uygulayarak CH1 kanalında izleyiniz.
- 4. LPF2 çıkışını CH2 kanalında izleyiniz. Genlik değerlerini tablo 3.13 e kayıt ediniz.
- 5. Giriş sinüs sinyalini değiştirmeden 3. ve 4. adımlarını Tablo 3.13 te verilen farklı frekanslar için tekrarlayınız.

Giriş Frekansı	1Hz	10Hz	20Hz	25Hz	30Hz	35Hz	40Hz	50Hz	100Hz
LPF 2									
Çıkışı						5			
(Vpp)					200	•			

Tablo 3.13 LPF 2'nin ölçülen çıkış genlik değerleri

6. Tablo 3.13 e kayıt ettiğiniz değerler bağlı olarak, LPF 2'nin karakteristiğini Tablo 3.14 de oluşturunuz.

- 7. Cihazı kapatıp bağlantıları sökünüz.
- K. Osilaskop Kullanarak EOG Ölçümleri
- 1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

KL-760	001 Main L	Jnit	KL-76001 Main Unit			
Section	Area	Terminal	То	Section	Area	Terminal
SCOPE ADAPTOR		CH1	\rightarrow	OUTPUT	ELECTRO- OCULOGRAM	Vo1
SCOPE ADAPTOR		CH2	\rightarrow	OUTPUT	ELECTRO- OCULOGRAM	Vo2
SCOPE ADAPTOR		CH1 (BNC)	Ş	CH1 input	of the oscilloscope	
SCOPE ADAPTOR		CH2 (BNC)	×	CH2 input	of the oscilloscope	
			3			

			P	3	
KL-76	001 Main Unit			KL-75003	EOG Module
Section	Area	Terminal	То	Block	Terminal
MODULE OUTPUT		9-Pin	\rightarrow	2	J2

- KL-75003 EOG modülü üzerinde köprüleme iletkenlerini 1 veya 2(hat frekansına bağlı olarak) 3, 4, 5, 7, 8 veya 9(hat frekansına bağlı olarak) 10, 11, 12, 14 ü bağlayınız.
- Aşağıdaki elektrot yerleşimlerine bağlı olarak yerleştiriniz. Elektrot uçlarını alkolle temizledikten gözün sağına, soluna, üstüne ve altına yerleştiriniz.
 Alna yerleştirilen elektrot referans elektrot olacaktır.

- KL-79101 5 iletkenli bağlantısının diğer uç kısımlarını şekilde gösterildiği bağlayınız. Modül kısmında KL-79101 iletkenini KL-75003 modülünün J1 kısmına bağlayınız.
- 5. Gücü bağlayınız. KL-76001 ana ünitesi üzerinde bulunan LCD ekrandan SELECT butonu ie MODULE :KL-75003 (EOG değerini seçiniz
- 6. Kişiye rahat olup olmadığını sabit durarak ileriye bakmasını söyleyiniz.
- Osilaskop ekranı gözlemleyerek CH1 ve CH2 kanallarının yaklaşık olarak
 0V civarında olmasını Offset2 ve Offset4 potansiyometreleri ile ayarlayınız.

- 8. VOLT/DIV kontrollerini kullanarak CH1 ve CH2 yi 1 V/div ve TIME/DIV kontrolünü kullanarak 500 ms/div değerine ayarlayınız.
- Bu durumda anfi1 ve anfi2 çıkışlarını 50 değerine ayarlandığından emin olunuz.(işlem basamakları D ve I ya bağlı olarak. Notlar:
 - a. Deney esnasında kişiye gözlerini kırpmayıp sabit durmasını söyleyiniz.
 - b. Eğer deri ile elektrot arasında direnç çok yüksek ise, sistemde aşırı
 derecede gürültüye neden olacaktır. Alkol temizleme bezi ile
 temizleyerek elektrotları tekrar bağlayınız.
- 10. Kişiye bir saniye içinde 5 kere gözünü kırpmasını söyleyiniz. Oluşan değerleri gözleyerek Tablo 3.15 e kayıt ediniz.

Koşul	CH1 (Yatay Bileşen) / CH2 (Dikey Bileşen)
5 Defa açıp kapatma	

Tablo 3.15 EOG Dalga şekli ölçümü

- 11. Bir diğer öğrenciye denekten 60 cm uzağa bir kalem tutmasını söyleyiniz. Deneğin bu kaleme bakmasını söyleyiniz.
- 12. Yavaşça kalemi sola doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan EOG dalga şeklini gözleyerek Tablo 3.16 ya kayıt ediniz.

PRO

PK

Tablo 3.16 EOG Dalga şekli ölçümü

13. Yavaşça kalemi sağa doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan EOG dalga şeklini gözleyerek Tablo 3.17 ye kayıt ediniz.

Tablo 3.17 EOG Dalga şekli ölçümü

14. Yavaşça kalemi yukarı doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan EOG dalga şeklini gözleyerek Tablo 3.18 e kayıt ediniz.

PRO

Tablo 3.18 EOG Dalga şekli ölçümü

15. Yavaşça kalemi aşağı doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan EOG dalga şeklini gözleyerek Tablo 3.19 e kayıt ediniz.

Kosul	CH1 (Yatay Bilesen) / CH2 (Dikey Bilesen)
Görününüm aşağı kayıp tekrar eski haline gelmesi	

Tablo 3.19 EOG Dalga şekli ölçümü

16. Gücü kapatınız. Bağlantıları sökünüz.

- L. KL-730 Yazılımı Kullanarak EOG Ölçümü
- 1. KL-75003 EOG modülünü KL-76001 ana ünitesi üzerine yerleştiriniz. Daha sonra aşağıdaki bağlantıları gerçekleştiriniz.

 \bigcirc

KL-76001 Main Unit				KL-75003 EOG Module		
Section	Area	Terminal	То	Block	Terminal	
MODULE OUTPUT		9-Pin	\rightarrow		J2	

- KL-75003 EOG modülü üzerinde köprüleme iletkenlerini 1 veya 2(hat frekansına bağlı olarak) 3, 4, 5, 7, 8 veya 9(hat frekansına bağlı olarak) 10, 11, 12, 14 ü bağlayınız.
- Aşağıdaki elektrot yerleşimlerine bağlı olarak yerleştiriniz. Elektrot uçlarını alkolle temizledikten gözün sağına, soluna, üstüne ve altına yerleştiriniz. Alna yerleştirilen elektrot referans elektrot olacaktır.

 KL-79101 5 iletkenli bağlantısının diğer uç kısımlarını şekilde gösterildiği bağlayınız. Modül kısmında KL-79101 iletkenini KL-75003 modülünün J1 kısmına bağlayınız.

- 5. KL-76001 ana ünitesi üzerindeki USB portu bilgisayara USB kablo üzerinden bağlayınız.
- 6. Gücü bağlayınız. KL-76001 ana ünitesi üzerinde bulunan LCD ekrandan SELECT butonu ie MODULE :KL-75003 (EOG değerini seçiniz
- 7. Bilgisayarı çalıştırınız.
- 8. KL-730 programını çalıştırınız. KL-730 Biyomedikal ölçüm sistem penceresi aşağıdaki gibi görünmektedir.

Şekil 3.12

9. Acquire butonuna basınız. Bu durumda sitem KL-75003 EOG dalga şekillerini USB portu üzerinden aktarmaya başlayacaktır.

- Not : Eğer "COM PORT arıza" mesajı görüntüleniyorsa bağlantıyı ve COM PORT ayarlarının doğru gerçekleştirilip gerçekleştirilmediğini kontrol ediniz.
- 10. VOLT/DIV ve TIME/DIV kontrolünü kullanarak sinyali düzgünce okunabilecek şekilde ayarlayınız.
- 11.Bu durumda anfi1 ve anfi2 çıkışlarını 50 değerine ayarlandığından emin olunuz.(işlem basamakları D ve I ya bağlı olarak.

Notlar:

- a. Deney esnasında kişiye gözlerini kırpmayıp sabit durmasını söyleyiniz.
- b. Eğer deri ile elektrot arasında direnç çok yüksek ise, sistemde aşırı derecede gürültüye neden olacaktır. Alkol temizleme bezi ile temizleyerek elektrotları tekrar bağlayınız.
- 12. Kişiye bir saniye içinde 5 kere gözünü kırpmasını söyleyiniz. Oluşan değerleri gözleyerek diske kayıt ediniz.

- 13.Bir diğer öğrenciye denekten 60 cm uzağa bir kalem tutmasını söyleyiniz. Deneğin bu kaleme bakmasını söyleyiniz.
- 14. Yavaşça kalemi sola doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan değerleri gözleyerek diske kayıt ediniz.
- 15. Yavaşça kalemi sağa doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan değerleri gözleyerek diske kayıt ediniz.
- 16. Yavaşça kalemi yukarı doğru hareket ettirip sonra tekrar orijinal konumuna getiriniz. Oluşan değerleri gözleyerek diske kayıt ediniz.
- 17. Yavaşça kalemi aşağı doğru hareket ettirip sonra tekrar orijinal konumuna
- getiriniz. Oluşan değerleri gözleyerek diske kayıt ediniz.
- 18.KL-730 yazılımdan çıkarak. Bağlantıları sökünüz.

